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Abstract: 

As a result of this work models of the finite beam and plate elements 

have been elaborated, to enable the analysis of the influence of the fatigue 

cracks and delaminations on the dynamic characteristics of the constructions 

made of unidirectional composite materials. The method of modelling the 

crack or delamination presented in the report enables an easy modification of 

the elaborated elements according to its specific damage (oblique crack, two- 

side crack, inside crack, multiple delaminations, etc.). 

The results of numerical calculations obtained from the crack model 

are in consistence with the known influence of the position and depth of the 

crack on the decrease of the natural bending frequencies of the cantilever 

beam. Simultaneously, a strong influence of the material parameters on these 

changes has been observed, which does not exist in the case of isotropic 

materials. 

The method of modelling the delamination in composite beams and 

plates is versatile and allows analysis of the influence of multiple 

delaminations on natural frequencies of beams and plates with various 

boundary conditions. Using the elaborated models effects of location and size 

of delamination on bending natural frequencies of composite beams and 

plates were studied. 
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1. Introduction 

The use of composite materials in various construction elements has substantially 

increased over the past few years. These materials are particularly widely used in 

situations where a large strength-to-weight ratio is required. Composite materials 

similarly to isotropic materials are subjected to various damages, mostly cracks and 

delaminations. They result in local changes of the stiffness of the element made of such 

type of materials and consequently of its dynamic characteristics are altered. Changes of 

natural frequencies and mode shapes, amplitudes of forced vibrations and also coupling 

of vibrations forms are observed. The dynamic characteristics of damaged elements can 

be correlated with the location and size of damages [1-4] (cracks or delaminations). 

These relations are frequently used in diagnosis of such constructional elements - for 

example [5-8]. 

The problem of changes in dynamic characteristic of constructional elements with 

damages made of isotropic materials has been a subject of many papers, the review of 

which is given by Wauer [9], but only a limited number of papres have been devoted to 

the changes in the dynamic characteristics of composite constructional elements. Adams 
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et al. [10], found that damage in specimens fabricated from fibre reinforced plastics 

could be detected by a reduction in the natural frequencies and an increase in damping. 

Cawley and Adams [11], successfully tested the frequency measurement principle on 

composite matrix for unidirectional composite materials in the presence of damage. 

Nikpour and Dimarogonas [12], presented the local compliance matrix for unidirectional 

composite materials. They have shown that the interlocking deflection modes are 

enhanced as a function of the degree of anisotropy in composites. The effect of cracks 

upon the buckling of an edge-notched column for isotropic and anisotropic composites 

has been studied by Nikpour [13]. He indicated that the instability increases with the 

column slenderness and the crack length. In addition he has shown that the material 

anisotropy conspicuously reduces the load-carrying capacity of an externally cracked 

member. Manivasagam and Chandrasekaran [14] have presented the results of 

experimental investigations upon the reduction effect of the fundamental frequency of 

layered composite materials with damage in the form of cracks. The effects of 

delamination on buckling and post-buckling deformation and delamination growth with 

various geometrical parameters, loading conditions, material properties and boundary 

conditions have been studied extensively by Chai et al. [15], Bottega and Maewal [16], 

Whitcomb [17], Yin et al. [18] and Chen [19]. However, only a few investigations have 

been conducted to study the effect of delamination on vibration characteristics. Natural 

frequencies of delaminated beams have been studied by Ramkumar et al. [20] on the 

basis of the Timoshenko beam theory. The authors, however, did not take into account 

the effect of coupling of the transverse vibration with the longitudinal wave motion in the 

upper and lower split layers. Their analytical results predicted significant reduction of the 

fundamental frequency (from that of the perfect beam) and this prediction was found to 

disagree with the experimental observation. Wang et al. [21] used the classical beam 

theory but they considered the coupling effect. With the inclusion of coupling, the 

calculated fundamental frequency was not appreciably reduced by the presence of a 

relatively short delamination and the results were in close agreement with experimental 

measurements. The effect of delamination upon the natural frequencies and mode shapes 



was analysed by Shen and Grady [22]. The effect of coupling between longitudinal and 

bending vibrations was considered in their model. Free vibration of a laminated 

composite beam-plate with a one dimensional delamination with respect to postbuckled 

reference states was also studied by Yin and Jane [23]. 

It is characteristic for all cited papers that their authors applied a continuos or 

discrete continuos models i.e. models which are based on differential equations. The 

crack in such models was substituted by a spring with additional boundary conditions 

[12-13] or by reduction in elastic modulus of material - see for more details [10-11]. The 

delamination was modelled by additional boundary conditions - see for more details [22]. 

This method of modelling is inconvenient for more realistic structures than beams or 

plates with constant cross-section. For this reason the authors of the presented report 

elaborated the alternative techniques of modelling of damaged structures. This technique 

is based on finite element method. The report presented the formulation of characteristic 

matrices for beam finite element with the transverse crack and delamination and also for 

the plate finite element with delamination. The results of numerical calculations received 

on the basis of elaborated models are also presented in the report. 

2. Cracked beam finite element 

2.1. General description of the element 

In the Fig.2.1 a composite beam finite element with the transverse crack is 

presented. The cracks is placed in the middle of the element and remains open, its depth 

is a. The width of the element is B, the length L and the height H. The angle between the 

fibre and the axis of the element (plane perpendicular to the crack) is a. The element has 

three nodes {I,II,III). Each of them has two degrees of freedom: transverse 

displacements qx,q3,q5  and rotations  q2,qA,q6.  Considering only the case of flat 



bending, and assuming that there is no warping in the transverse cross-section of the 

element, displacements on the both sides of the element could be expressed by relations: 

H 

Fig.2.1 Composite beam finite element with a transverse crack. 

\«xi(x,y) = -yfa(x)     [uxl (x, y) = -y fa (x) 

\uyX(x,y) = vx(x)      '   Ka(*>j0 = v2(*) 
(2.1) 

where fa (z = 1, 2) denotes rotation and v, (z = 1,2) - transverse displacement. Transverse 

displacements v,. on both sides of the crack (on left and right hand side of the element) 

could be approximated by cubic polynomials while the independent rotations fa by 

quadratic polynomials [24]: 

[v,(x) = a1 +a2x+a3x
2 +aAx

i     Jv2(x) = as + agx + al0x
2 +aux

3 

\fa(x) = a5+a6x + a7x
2 '   \fa(x) = an +a13x + a14x

2 

Assuming that the distribution of the shear stress is linear [25], the relations (2.2) could 

be written in the form: 

[ v, (x) = ax + a2x + a3x
2 + a4x

3     J v2 (x) = a7 + a%x + agx
2 + al0x

3 

fa (x) = as + a6x + 3a4x
2 fa(x) = au +a12x + 3a]0x

2 
(2.2.a) 

Using the conditions in the nodes of the element and the conditions expressing 

consistency of displacements in x and y directions, and the balance of forces and 



moments we could obtain the unknown values ax-an. Values cr and c^ represent 

flexibility coefficients of the element in the crack. 

Vl(x = L/2) = q3,        fa(x=L/2) = q4 

v2(x = L) = q5, <j)2{x = L) = q6 

uxl(x = L/2)-ux2(x = L/2) = cr-u'xl(x = L/2) 

u'xl(x = L/2) = u'x2(x = L/2) 

u^(x = L/2) = uy2(x = L/2) 

u'yl(x = L/2)-u'y2(x = L/2) = cfu;i(x = L/2) 

u,;i(x = L/2) = u';2(x = L/2) 

U
,
;;(X = L/2) = U';2-(X = L/2) 

(2.3) 

Applying the standard finite element formula the coefficients a, -a12 could be written as: 

V V a7 V 
• = A,< < ■ = A2< : > 

a6 $6. «12. ?6. 

(2.4) 

where matrices A, and A2 take the following form: 

A,= 

1 

aL 
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aL 

0 

0 

0 

0 
L-2cr 

3~ß 
L-2cr 

ßL 
2(L-2cr) 

3~ßL2 

1 
3L-4cr 

ßL 

4(1-c,) 2 

a.L 3 
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aL 
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0 
4 

0 
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~L 

a 
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aL 
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0 
L_ 
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3ßL 
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ß 

(2.5) 
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ßL 
2(L-2cr) 

3~ßÜ 
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~ß 
3L-4cr 

~ßL 

a 
4(1 + ^) 
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 4_ 

aL 

0 

0 

2 
> 

\ 

3I2 

0 

4_ 

L 

2c^ 

a 
L + 4c, 

0 

L 

3 aL 3^ 
2 2 1 

L aL /? 
4 

0 
2 

3/?Z 

_1_ 

(2.6) 

where cc = L-2c^,ß = L-cr. 

Next, from the relations between the coefficients a, -a12 and the displacements we could 

easily obtain the relations for the shape function N\ and N2 in both parts of the element: 

= *M v. 
<?6 

*:c2 

V2. 
:NJ 

07 

?12 

N^X.-A,,   N^X.-A, 

(2.7) 

(2.7.a) 

where matrices X, and X2 have the form: 

X, - X2 - 
0   0    0    -3x2y   -y   -xy 

1     X     X 0       0 
(2.8) 

The strains in the element could be obtained from the following relations: 

exl(
x>y) = -y dx 

r^(x,y) 
dx ■Mx) 

eAx>y) = -y 
d02(

x) 
dx 

dv2{x)     , , . 
(2.9) 

Substituting the relations (2.2.a) into equations (2.9) and using the relations (2.4), (2.5), 

and (2.6), the strains inside the elements could be expressed in the node-displacement 



function. It means, that the linear strain-nodal displacement relation matrices B, and B2 

have the form: 

= BJ 
xlyl 

*x2 

r. 
= B2<! 

x2y2 

l& J 

B, =X1-A1,   B2 =X2-A2 

In 

(2.10) 

(2.10.a) 

where matrices X, and X2 denote: 

Xj -X2 

0   0    0    -6xy    0    -^ 

0    1   2x      0      -1   -x 
(2.11) 

Finally, the matrix of inertia and stiffness matrix of transverse cracked element could be 

written in the following form: 

= pAf JxfX^A, +pAT
2jXT

2X2dV2A2 = 

= MfMiA, +pA2
rM:A2 

Ke = JßfDB,^ + JB£DB2^2 = 

= Af JxfX^A, + A2
r|X2~X2fl^2A2 = 

(2.12) 

(2.13) 

= A[K;A1+A^A2 

where matrix D is the stress-strain relation matrix for the unidirectional composite 

material. Substituting into equations (2.12) and (2.13) relations (2.5) and (2.6) and after 

multiplying and integrating, the inertia and stiffness matrices for both parts of the element 

take the following form: 



1 L L2 Ü 
0 0 

2 8 24 64 
L2 Ü I4 

1 0 0 

1 
24 64 

L4 
160 
Z5 

0 0 
1                                   M1 = BEL 160 384 

e L6     3L4E2 

896      640 

L2E7 ÜE2 

\ 
96 256 

#L LE2 

1 Sym. 
24 96 

L2E2 

288 . 

(2.14) 

"l 3Z 1L2 15Z3 

0 0 
2 8 24 64 

1L2 15Z3 31Z4 

0 0 
24 64 160 

31Z4 21L5 

0 0 
1                                     M2 = BEL 160 128 

127Z0    93ÜE" 1L2E2 15ÜE2 

 + — 
896 540 96 

#2 
256 
Z#2 

Sym. 
24 96 

1L2E2 

- 288 

(2.15) 
"0 0 0 0 0 0 

§SL LS66 0 See ^56   
2 4 2 8 

L2S66 0 
LS66 L2S66 

6 4 12 
K\ = BEL 

Sym. 

L2E2SU 

8 
0 

s^ 
2 

LE2S 

8 

8 

i 

L2S66+H2SU 

i - 24 

(2.16) 
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K? = BEL 

0      0 
S, 66 

2 

Sym. 

0 
3LS, 66 

4 
7Z,2&, 

0 

0 

0 

7L2E2S, 

0 
_^6 

2 
3I£ 66 

5, 66 

2 

0 

8 

12 
3Lff2£ 

16 
3X5, 66 

7L2S66+E
2SU 

24 

(2.17) 

where 5,, and S66 are the elements of the stress-strain relation matrix (see Appendix C). 

2.2. The model and the algorithm for calculating the flexibility in the crack 

The flexibility coefficients of the element due to the appearance of the crack 

could be obtained from the Castigliano theorem: 

d2U (2.18) 

where U is the additional elastic strain energy of the element caused by the crack, while 

Pi and P. denote the independent nodal forces of the finite element. The additional 

elastic strain energy in the case of cracks existing in the unidirectional composite 

materials [12] equals to: 

n n 

U = J A2X +A2Z^IX +A2X, \dA (2.19) 

where A is the surface of the crack, Kfi (j = I, II, i = 1,2,..., ri) are the stress intensity 

factors and Dl, Dn, D2 are the coefficients depending on the material parameters. 



Z), =-0.5i22Im[l/5I +1/5,] 

Dn=bnlm[slSl} (2.20) 

D2 = 0.5£uIm[s1+52] 

The formulae for calculating values 5,, 52 and bij are shown in Appendix B. 

In the general case, stress intensity factors for composite materials are not equal to the 

stress intensity factors calculated from the solution of the crack problem of the same 

geometry in the isotropic material. According to the results presented in the paper [26] 

these factors could be written as: 

Kß = at4^Fß(a/HML/H,c) (2-21) 

where o{ denotes the stress acting in the crack, a is the depth of the crack, H is the 

height of the element, Fß are the correction factors, which consider the finite dimensions 

of the element and properties of the material (anisotropy of the material), while the 

material parameters Ä, C, are given in paper [26]. It is also shown there, that for 

%[XL/H > 2 intensity factors for transverse cracks in composite materials could be given 

as: 

Kß = at^Fß(alH)Y^) (2.22) 

where Y(£) is the correction function which takes into consideration the anisotropy of 

the material [26]. 

Finally, we obtain: 

c,=^](FZ)2$d§ (2.23.a) 
B 

72 TCD, 
c - 

o 

BE    0 

\{F2Y,)2$dt (2.23.b) 

where from [26]: 

F =  fta^0.752 + 2.02^+0.37(l-sin ijf ^ 
1     V    77 cos 77 

10 



K 
/tan 77 0.923+ 0.199(1-sin rjf 

\      77 COS 77 

i; = l + 0.l(^-l)-0.016(^-l)2+0.002(C-l)3 

c-- 
yjLuh. 

2G„ 
22    v,,.&- 

(2.24.b) 

(2.24.c) 

(2.24.d) 

and  % = a/H,r]= Tta/lH,  while B is the width of the element.  The method of 

calculating of the material parameters is shown in Appendix A. 

3. Delaminated beam finite element 

3.1. General description of the element 

A discrete model of a delaminated part of the beam is presented in Fig.3.1 The 

delaminated region is modelled by three beam finite elements which are connected at the 

tip of the delamination by additional boundary conditions. 

H 

% 

X~^~ry^ 

L/2 L/2 

wmmmmm 

Fig.3.1. The delaminated region of a beam modelled by finite elements. 

The layers are located symmetrically with respect to the x-z plane. Each element 

has three nodes at x - -L/2, x = 0, x = L/2. At each node there are three degrees of 

freedom which are axial displacement qx,qA,qn, transverse displacement qi,q6,q9 and 

the independent rotation q2,q5,qs. Additionally it is assumed that the number of degrees 

of freedom is independent of the number of layers. 

11 



3.1.1. Description of the element number/ 

Neglecting warping, the displacements u and v of a point can be expressed as: 

\u(x,y) = u\x)-y-<f>(x) 

jv(x^) = v°(x) 

where u°(x) denotes the axial displacement, $(x) the independent rotation, and v°(x) 

the transverse displacement. 

In the finite-element modelling, the bending displacements v°(x) are assumed to 

be cubic polynomials in x, while the axial displacement w°(x) and the rotation </>(x) are 

assumed to be quadratic. Additionally it is assumed that shear strain variation is linear, as 

proposed by Tessler and Dong [25]. Employing the above conditions, the displacements 

and rotation in the element may be written in the following forms: 

u°(x) = a1 +a2x + a3x
2 

</>(x) = a4+a5x + 3agx
2 (3.2) 

v°(x) = a6+a7x+a8x
2 +a9x

3 

The constants a, - ag can be expressed in terms of the element degrees of freedom by 

using the nodal conditions in the following forms: 

u\x = -L/2) = ql 

fix = -L/2) = q2 

v°(x = -L/2) = q3 

u°(x = 0) = q, 

^(x = 0) = g5 (3.3) 

v°(x = 0) = ?6 

u°(x = L/2) = q7 

<j> (x = L/2) - q% 

v\x = LI2) = q9 

12 



Finally we obtain: 

«1=04 

L 
2{qx-2qA+qi) 

L2 

a4 = q6 

<x -?3+$ 
Z, 

(3.4) 

^=#5 

a, = 

-6q2 -q1>L + 2q6L + 6q% -qgL 

6Z 
2Q?2-2g5+g8) 

L2 

2(q3-2q6+q9) 

3L2 

Taking into account Eqs. (3.4) and Eq. (3.2) we can determine the matrix of the shape 

function for the single layer of the element. 

N = X-A (3.5) 

where matrix X has the form: 

1    x   x2    -y   -xy   0   0    0    -3x2.y 

0   0    0     0       0      1    x   x2       x3 
(3.6) 

whereas the matrix A can be expressed as: 

13 



A = 

L 
2_ 

L2 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

-1 
L 

U 
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0 

0 

0 

0 

_1 
L 

0 
_l_ 

6 

0 

2 

w 
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0 

_4_ 

' L2 

0 

0 

0 

0 

0 

0 

0 

0 

0 0 

0 1 

0 0 

1 0 

0 
1 

3 
4 

0 

0 
3Z2 

0 
J_ 
L 

_2_ 

L2 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
_1_ 

L 
2_ 

I2 

0 

0 

0 
j_ 
L 
0 

_\_ 
6 

0 

2 
3L2 

(3.7) 

Employing the shape function matrix for the single layer, we can determine the inertia 

matrix of the whole element using the following formula: 

M„ 
j=R 

f Mi ='f pj^dVj =f PjA
rjXrXdVJ A 

;=i     Ff 

fp;A
rMfA 

(3.8) 

where j denotes the number of a layer, R the global number of layers in the element, Vj 

the volume of they-th layer of material and pj the density of the z'-th layer. 

The value of the integral in Eq. (3.8) (for the j-th layer) can be expressed in 

closed form as: 

14 



M{ = BL 

L 
a      0      —a 

12 

— a      0 
12 

Ü 
— a 
80 

Sym. 

1 L2 0 
--ß 

2 
0 

I2 

0 0 0  ß 
8 

0 
24 

Ü 0 0 0 

L2 
3^4 a 

 P 0 Ü 0 0 ~T7^ß 2AH 160 
1 L2 

~Y 0 0 0 0 ~^Y 
3 

L2 
12 

-—Y Ü 0 0 0 
36 

L2 

a 0 

r2 

•—a 
12 

0 

— a 0 — a 
12 

Ü 
— a 

80 

0 
80 

L6        3Ü 
 ai r 
448        80    . (3.9) 

where a = H^ -HJt ß=H2
+l -H), y = H)+x -H). 

The strains of the single layer of material are given by the following formulas: 

_ du{x,y) _ du3(x)      d<f>{x) 

dx dx dx 

du(x,y)    dv(x,y) _ dv\x) 
(3.10) 

Yxy = dy 
■ + - 

dx dx 

Taking into account relations (3.2) and (3.4), the strains in the single layer can be 

expressed as a function of nodal degrees of freedom: 

V 
£

x = B ?2 

UJ 
_?9_ 

(3.11) 

where matrix B equals 

B = X A (3.12) 

15 



and matrix X is given as: 

0    1    2x    0    -y   0   0    0    -6xy 

0   0    0    -1   -x   0    1    2x       0 
(3.13) 

The stiffness matrix of the whole element has the form: 

j=R 

;=i v. 

Ka = ±Ki =2JVD.B^. =±A
T
 JxrD,W, A 

ZArKfA 
7=1 

(3.14) 

where D; denotes the matrix which describes relations between stresses and strains in the 

y'-th layer of the element (see Appendix C). 

The values of the integral in Eq. (3.14) (for they'-th layer of the material) can be 

presented in closed form as: 

K{ = BL 

0      0 

Sua 

0 

0 -Sl6a 

Sym. 

a      0 

S66a 

0 

2 
S]6L

2 

a 

2 
S66l}g+ASnr 

12 

Sl6a 

S66L
2 

V a    - 

6 
0 

a   - 
S66L

2 

6 
0 

See? a    - 

0 

0 

S"L R 
2    ß 

0 

0 

0 

0 
S\6L    ß 

2   ß 

W J 

where a = HJ+x-Hj, ß=H% -H), y = H)^ -H] 

(3.15) 
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3.1.2. Description of elements number If and III 

In order to connect element I with elements 77 and III, the following boundary 

conditions are applied at the tip of the delamination: 

u°(x) = u°2(x) + zj2(x) 

U\ (x) = «3 (x) + Z3 ^3 (X) 

v1°(x) = v2
0(x) = v3°(x) 

(3.16) 

where z2  and zz denote distances between neutral axes of elements I-II and I-III, 

respectively (see Fig.3.1). 

Taking  into   account  relations  (3.16)   and   (3.2),   the  relationships  between 

constants ax -ag for the above-mentioned elements can be evaluated as: 

a\ 

a. 

a 

■■cff=cF 

■■ a" = a, 

4    > 

III 
6    i 

III 

a: 

a< 
„a    „■ a7 = a. 

a" =a(-y2ai, 

a[ = af = 

„in    „J 
a,   = a, 

a, 

m 
7 

III 

*2 

,11 

JU 

-y3
a4 

aJ
2-y3a'5 

a'3" -a\- 3y2a
!

9,   a
1" =a[- 3y3a\ 

(3.17.a) 

(3.17.b) 

where the superscripts I, II and III denote the number of the element in the region of 

delamination. 

The shape function matrices for the elements number II and III will have the 

following forms: 

N, =X-A. (3.18) 

N, =X-A, (3.19) 
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where A,. (/' = 1, 2): 

A; 

0 0 0 1 0 zi 0 0 0 
1 Z- 1 zi 

0 I 0 0 0 0 I 

"l L z L 
2 2z. 4 4z. 2 2z 

0 i 0 I -—- 0 
Ü L2 'If z2 

L2 L2 

0 0 0 0 0 1 0 0 0 
1 

0 0 
1 

0 0 0 0 0 
~T L 

0 0 0 0 1 0 0 0 0 
1 l 1 1 1 

0 0 0 0 — 
~T ~6 3 L 6 

2 4 2 
0 If 0 

2 

0 "If 0 

4 

0 If 0 

2 
0 0 _     ^T 0 0 —    -r-> 

0 0 ~    T? 
3L2 3L2 3LZ 

(3.20) 

Taking into account matrices A2 and A3 we can determine (using relation 3.8) the 

inertia matrix of elements // and III. 

In a similar way matrices B2 and B3 of elements 7/ and III can be evaluated, and 

finally the stiffness matrices (using relation 3.14) of these elements can be calculated. 

4. Delaminated plate finite element 

4.1. General description 

The way of modelling delaminated region in a composite plate with delamination 

is presented in Fig.4.1. The delamination is modelled by three plate finite elements. In 

order to connect these elements in the delamination crack tip, additional boundary 

conditions are applied. Material layers in an element are located symmetrically with 

respect to x-y plane. Each element has eight nodes with five degrees of freedom. 
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1 2 3 

Fig. 4.1. The region of delamination in a plate modelled by finite elements. 

Axial displacements u, v and w in a single layer can be expressed as: 

u(x,y,z) = u°{x,y) -z-#x{x,y) 

v{x,y,z) = v°(x,y)-z-<f>y{x,y) 

w{x,y,z) = w°(x,y) 

(4.1) 

where u°,v°,w° denote mid-plane displacements, while(j>x and <j)y denote independent 

rotations. To approximate the axial mid-plane displacements and rotations biquadratic 

shape functions for eight-node element have been used. 

= ^40-« 

(40 

(4.2) 
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^(^^ = -1/4 + ^-^+^+2^/7-2^ 

#2(£77) = l/2+77-2<f-4£2/7 

^7(^77) = l/2-77-2^2+4|277 

(4.2.a) 

where %=xlL and r/=y/B. 

Using standard finite element formulae the inertia matrix of the whole element can be 

determined: 

;=1 ;=1      F, 

(4.3) 

where j denotes the number of the layer, R total number of layers in the element, Vj the 

volume of thej'-th layer of material and p}- the density of/'-th layer. 

The strains in the single layer of material can be calculated from the following relations: 

0                du        dtj)x 
s= ei+z-K=— z- 

£y = £y+Z-Ky = 

dw° 

dx        dx 
dv°       dS 

dy       dy 
fa.fi      dv°~)       f 

- z 
du0   dv° 

• + - 
dy     dx 

dk.J^y 
dy      dx 

r, 

r yz 

dx 

dw° 

dy 

** 

(4.4) 

Taking into account relations (4.1), (4.2) and (4.4) the strain in a single layer can be 

expressed in the following form: 
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' ex' ' <l\ 

Sy 

r*y ' = 05x40^ 
; 

r* 
V*\ #40. 

Thus the stiffness matrix of the whole element can be written as: 

(4.5) 

(4.6) 

where D. denotes the stress-strain relations matrix for the y'-th layer of material (see 

Appendix C). 

4.2 Boundary conditions in the delamination crack tip 

To connect the elements I with elements II and III, modelling the delamination area and 

to satisfy continuity of the displacements the following conditions must be fulfilled (see 

Fig.4.2): 

,o_fh-fh \-K 
2 2 

Fig.4.2. The cross-section of the plate in delamination crack tip. 

U2  = M1° - A. ■ fix,      Ul = Ul   - Zl ■ fix 
0 0 0      l \A-A-t 

(4.7) 

where z° and z\ are the distances between neutral axes of elements /-// and I-III. 
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Applying relations (4.7) to (4.1), the displacement fields of elements // and /// which 

model delamination region are obtained. Similarly, the inertia and stiffness matrices of 

these elements can be calculated. 

5. Numerical calculations 

5.1 Natural frequencies of cracked composite beam 

The examples of numerical calculations showing the influence of the crack 

parameters (depth and position) and material parameters (volume of the fibre and the 

angle of the fibre) on the changes of the frequency of natural bending vibrations were 

carried on for the cantilever beam, which geometrical dimensions are shown in Fig. 5.1. 

It has been assumed that the beam is made of unidirectional composite material (graphite 

-fibre reinforced polyamide). Materials parameters of the components and relations to 

calculate the gross material coefficients for the analysed composite material are presented 

in Appendix A. 

Fig. 5.1. Geometry of the cantilever composite beam with a transverse crack. 
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In all cases we assumed ten beam finite elements presented in the paper 

(including the element with the crack) to divide the analysed beam. 

The numerical calculations were carried on a PC computer using a program 

written by the authors. For the standard eigenvalue problem the QL method was applied. 
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Fig.5.2 Influence of the crack depth on the first three natural frequencies of the cantilever 

composite beam a) first frequency, b) second frequency, c) third frequency. 
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Fig. 5.3 Influence of the crack location on the first three natural frequencies of the 

cantilever composite beam a) first frequency, b) second frequency, c) third frequency. 
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Fig. 5.4 Influence of the fibres angle on the first three natural frequencies of the 

cantilever composite beam a) first frequency, b) second frequency, c) third frequency. 
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Fig. 5.5 Influence of the fibres volume on the first three natural frequencies of the 

cantilever composite beam a) first frequency, b) second frequency, c) third frequency. 
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In Fig.5.2 and Fig.5.3 the results showing the influence of the depth and the 

position of the crack on the first three natural frequencies of the analysed beam are 

shown. Numerical calculations have been carried on assuming the overall volume of 

fibres of 20% and the angle of the fibre 45 degrees (measured between the geometric 

axis of the beam and the material principal axes). 

From the Fig.5.2 and 5.3 it is clear, that the increase of the depth of the crack 

causes in each case decrease of the each calculated natural bending frequency of the 

analysed beam. The influence of the position of the crack on the changes of the z'-th 

natural bending frequency of the analysed beam is more complicated and should be 

considered together with the character of the vibrations corresponding to that frequency. 

It shows, that the decrease of the considered natural frequency is most substantial when 

the crack is placed in the node and least substantial when the crack is placed in loop of 

vibrations. This can be explained by the fact that in the case of vibrations of the cantilever 

beam maximal bending moment appear in the nodes, while in the loops of vibrations 

bending moment is assumed zero. The decrease of stiffness in the crack corresponds 

(through the values of the stress) to the value of the bending moment. Hence, the highest 

decrease in the stiffness caused by the crack (and also the highest decrease of the natural 

bending frequency of the beam) of the same depth will occur always in the places where 

the bending moment is highest. 

Fig.5.4 and Fig.5.5 show the influence of the material parameters (described by 

the angle of the fibres and relative volume of the fibres) on the changes of first three 

natural bending frequencies of the analysed beam. For calculations, we assumed non- 

changing position of the crack {LJL = 0.25) and constant value of its depth, namely 

35% of the height of the beam. 

Two conclusions could be obtained from Fig.5.4 and Fig.5.5. Firstly, with the increase of 

the angle of the fibre all natural bending frequencies of the beam increase with respect to 

the values of the natural bending frequencies of the beam without the crack. For all 

angles greater than 60 degrees, the decrease in the natural frequency caused by the crack 
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is almost unnoticeable. This conclusion does not concern the case of isotropic material, 

where the relative volume of the fibre equals 1 or 0. 

Secondly, as a result of the numerical calculations it has been shown, that the decrease of 

the natural bending frequency of the beam caused by the crack strongly depends on the 

volume of the fibre. These facts could be explained by noticing the changes in factors 

DX,D2 in the function of the angle and relative volume of the fibre. 

5.2 Natural frequencies of delaminated beam 

The formulation of the elements and the method of modelling of the delaminated 

region of the beam have been evaluated by performing several example calculations. 

Numerical calculations have been made for the cantilever beam of the following 

dimensions: length 600 mm, height 25 mm and width 50 mm. The beam was made of 

graphite-polyamide composite. It was assumed that all layers of the beam have the same 

mechanical properties, i.e., the volume fraction of fibers and the angle of fibers in each 

layer are identical. The mechanical properties of the applied material are given in 

Appendix A. 

The first example illustrates the influence of the delamination position along the 

beam height upon the changes of the first bending natural frequency. The length of 

delamination was equal to 120 mm (a/L = 0.2) and the center of delamination was 

located 300 mm from the free end of the beam (Zj/Z, = 0.5). The angle of fibers 

(measured from x-axis of the beam) was 45 degrees., whereas the volume fraction of 

fibers was equal to 20% the volume of the beam. In this case the beam was discretized by 

12 finite elements (4 elements in 2 layers around the region of delamination and 8 

elements outside the delaminated region). The results of numerical calculations are given 

in Fig5.6. It is clearly shown that the largest drop in the first natural frequency is 

observed when the delamination is located along the neutral axis of the beam. When the 

delamination is located near the upper or the lower surface of the beam the changes in 

the first natural frequency can be neglected. 
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Fig.5.6. Influence of the delamination position (along the beam height) on the first 

natural frequency of the cantilever composite beam. 

In the next example the influence of the length of the delamination upon the drop 

in bending natural frequencies of the analysed beam was observed. It was assumed that 

the delamination growth from the free end of the beam. The other parameters were the 

same as in the first example. The results of numerical calculations are presented in 

Fig.5.7. It is noted that when the length of the delamination increases the values of 

natural frequencies are greatly reduced. The intensity of these changes also depends on 

the number of natural frequencies (i.e., the mode shape and the location of delamination 

along the beam). 
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Fig. 5.7 Influence of the delamination length on the first three natural frequencies of the 

cantilever composite beam a) first frequency, b) second frequency, c) third frequency. 

The third example shows the influence of the location of delamination along the 

beam on the drop in bending natural frequencies. As in the first and second examples the 

beam was made of polyamide-graphite composite material. The delamination was located 

along the neutral axis of the beam. The length of delamination was equal to 37.5 mm 

(a/L = 0.0625). Fig.5.8 illustrates the changes of analysed frequencies for different 

locations of the delamination. It is clearly shown that the changes in natural frequencies 

strongly depend on the location of delamination. For the analysed beam the largest drop 

in natural frequency is observed when the center of the delamination is located at the 

node of mode shape associated with this frequency. 

36.5 - 

V    36.0 - 

s- 
c 
§     35.5 - 
er 
m 

~m 
5     35.0 - 
M 
C 

» 
E    34.5 -• 

34.0 — 

33. '    I    ' 1     1    ' 1 1     1    ' 1 1     1    ' 
0.0      0.1      0.2      0.3      0.*      0.5      0.6      0.7      0.8      0.9       1.0 

Relative position of delamination [L 1 /L] a) 
0.0      0.1       0.2      0.3      0.*      0.5      0.6      0.7      0.8      0.9       1.0  ,. 

Relative position of delamination [L 11L] [) J 

29 



0.0      0.1      0.2      0.3      0.4      0.5      0.6      0.7      0.8      0.9       1.0      .. 
Relative position of delam ination [L 1 /L] C ) 

Fig. 5.8 Influence of the delamination location on the first three natural frequencies of the 

cantilever composite beam a) first frequency, b) second frequency, c) third frequency. 

5.3 Natural frequencies of delaminated plate 

Numerical calculations for the cantilever composite plate have been carried out 

for the following plate dimensions: length 240 mm, width 120 mm and height 6 mm. The 

plate consisted six layers of materials with changing angle of fibres (+45 degrees in 1, 3, 

5 layers and -45 degrees in 2, 4, 6). Each layer of the plate was made of graphite- 

polyamide composite. It was assumed that all mechanical properties except the angle of 

fibers are the same in each layer. The mechanical properties of the applied material are 

given in Appendix A. 

The first example illustrates the influence of the delamination position along the 

plate height on the changes of the first bending natural frequency. The length of 

delamination was equal to 30 mm (alL = 0.125) and the center of delamination was 

located 105 mm from the free end of the beam {LJL = 0.4375). The volume fraction of 

fibers was equal to 20% the volume of the plate. In this case the plate was discretized by 

54 finite elements (42 elements in 2 layers around the region of delamination and 12 

elements outside the delaminated region). The results of numerical calculations are given 

in Fig.5.9. It is clearly shown that the largest drop in the first natural frequency is 
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observed when the delamination is located along the neutral plane of the plate. When the 

delamination is located near the upper or the lower surface of the plate the changes in the 

first natural frequency can be neglected. 
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Fig. 5.9 Influence of the delamination position (along the plate height) on the first ^natural 

frequency of the cantilever composite plate. 

r 

In the next example the influence of the length of the delamination upon the drop 

in bending natural frequencies of the analysed plate was observed. It was assumed that 

the delamination growth from the free end of the plate. The other parameters were the 

same as in the first example. The results of numerical calculations are presented in 

Fig.5.10. It is noted that when the length of the delamination increases the values of 

natural frequencies are greatly reduced. The intensity of these changes also depends on 

the number of natural frequencies (i.e., the mode shape and the location of delamination 

along the plate). 
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Fig. 5.10 Influence of the delamination length on the first three natural frequencies of the 

cantilever composite plate a) first frequency, b) second frequency, c) third frequency. 

The third example shows the influence of the location of delamination along the 

plate on the drop in bending natural frequencies. As in the first and second examples the 

plate was made of polyamide-graphite composite material. The delamination was located 

along the neutral plane of the plate. The length of delamination was equal to 30 mm 

(a/L = 0.125). Fig.5.11 illustrates the changes of analysed frequencies for different 

locations of the delamination. It is clearly shown that the changes in natural frequencies 

strongly depend on the location of delamination. For the analysed plate the largest drop 

in natural frequency is observed when the center of the delamination is located at the 

node of mode shape associated with this frequency. 
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Fig. 5.11 Influence of the deiamination location on the first three natural frequencies of 

the cantilever composite plate a) first frequency, b) second frequency, c) third frequency. 

5. Conclusions 

As a result of this work models of the finite beam and plate elements have been 

elaborated, to enable the analysis of the influence of the fatigue cracks and delaminations 

on the dynamic characteristics of the constructions made of unidirectional composite 

materials. The method of modelling the crack or deiamination presented in the paper 

enables an easy modification of the elaborated elements according to its specific damage 

(oblique crack, two-side crack, inside crack, multiple delaminations etc.). 
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The results of numerical calculations obtained from the crack model are in 

consistence with the known influence of the position and depth of the crack on the 

decrease of the natural bending frequencies of the cantilever beam. Simultaneously, a 

strong influence of the material parameters on these changes has been observed, which 

does not exist in the case of isotropic materials. The results above are also backed 

theoretically, but to justify them it is necessary to carry out the experimental research as 

well. A preparations to do this has already been made. 

The method of modelling the delamination in composite beams and plates is 

versatile and allows analysis of the influence of multiple delaminations on natural 

frequencies of beams and plates with various boundary conditions. Using the elaborated 

models the effects of location and size of delamination on bending natural frequencies of 

composite beams and plates were studied. 

Based on the numerical results, the following conclusions are drawn: 

1) The delamination in cantilever composite beams and plates causes, as expected, 

reduction in bending natural frequencies. 

2) The changes in natural frequencies are a function of the location and length of the 

delamination. 

3) When the center of delamination is located at a point where the bending moment 

has the maximum value (for analysed mode shape) the reduction in the bending 

natural frequency associated with this mode is largest. 

4) The largest drop in the bending natural frequencies is observed when the 

delamination is located along the neutral axis. 

5) When the length of the delamination increases the drop in natural frequencies also 

increases. 
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Appendix A 

The properties of the graphite-fibre reinforced polyamide composite analysed in the 

paper are assumed as follows [9]: 

matrix 
(polyamide) 

fibre 
(graphite) 

elastic modulus Em = 2.756 GPa m 
Ef = 275.6 GPa 

Poisson's ratio vm = 0.33 v/ = 0.2 

rigidity modulus G =1.036 GPa m 
Gf = 114.8 GPa 

mass density yom=1600kg/m3 pf = 1900 kg/m3 

36 



The material is assumed orthotropic with respect to its axes of symmetry which 

lie along and perpendicularly to the direction of the fibre. The gross mechanical 

properties of the composite are calculated using the following formulate: 

p = pfo+pm{l-u) 

Eu=Efu+Em{l-u) 

Ef+Em+(Ef-Em)u 
E21 ~ E, 

v12= vfo+vm{l-v) 

E,+Em-(E,-Em)u_ 

1+Vm-V\2EJEU v23 = vrv+vm{l-u) 

GU = Gm 

1+vÜ,-vmv12£m/£„ 

Gf + Gm+(Gf-Gm)v 

Gf+Gm-(Gf-Gm)o 

G, 
J22 

2(1-vj 

where u denotes the volume fraction of the fibre. The principal axes 1 and 2 are in the 

plane of the composite specimen aligned along and perpendicularly to the fibre 

directions. 

Appendix B 

The complex constants sl and s2 are the roots of the presented characteristic equation 

[12]: 

bus*-2b]6s
3 +(2bn+b66)s

2 -2b26s + b22 = 0 

where constants bM are calculated from the following relations: 
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bu=bum4 +2{bn +b66)mW +b22n
4 

b22 = bun4 + 2{bu + b66)m2n2 +b22n
4 

bn={bu+b22-2b66)m2n2 +bu(m4 +n4) 

K={bn-bu -b66)m'n + {b]2 -b22 + b66)n
3m 

K = (*ii - bxi - b6Mm + {bn - b22 + b66)m3n 

b66 = 2{bn -2bn +b22-b66)m2n2 +b66{m4 +n4) 

where m= cos(a), rv= sin(a), (a denotes the angle between the fibre direction and axis of 

the beam perpendicular to the crack-see Fig.2.1). The terms btj correspond to the 

situation when the geometric axes of the beam coincide with the material principal axes. 

These are related to the mechanical constants of the material by: 

b,= 1-v,2 

*22=T7-(l-v2
2
3) 

J22 

^-^-(l + vj 
R 22 

b66 = 
G 12 

Roots of the characteristic equation are either complex or pure imaginary and can not be 

real. Thus, the four roots separate into two sets of distinct complex conjugates. The 

parameters sl and s2 correspond to those with positive imaginary parts. 

Appendix C 

In the case of analysed beam elements, the stress-strain relations matrix posses the form: 

D = ^11       ^16 

^16       ^66 
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while for the plate element, the stress-strain relation matrix can be written as: 

D 

^11        ^12        ^11 

Sn "->22 ^26 

Sl6 ^26 S66 

044 

S45 

o45 

4 

Elements of matrix D can be calculated from following relations: 

Su=Sum*+S22n
4+2{Sn+S66)m2n2 

S\2 = {Su +S22 -2SjmW +S]2(m* +«4) 

S?=Sun*+S2jn*+2{Sl2+Sf6Wrti 

Sl6 = (Sn -Su-S66)m
3n + {Sn-S22 +S66)n

3m 
Sj6 = (Su-Sn-S66Wm + {Su-S22 +S66)m3n 

S66 = 2{SU + S22-2Sn-S66)m2n2 +S66(m* +nA) 

SA4=S44m
2+S55n

2 

^45 — W55    "44/ mn 

sAA = sy+s55m
2 

where m= cos(a), n= sin(a), (a denotes the angle between the fibre direction and neutral 

axis). 

The terms Sr corresponding with the material principal axes are determined in all cases 

by following formulas: 

a    _        -^lj  
°11 

1-^12^21 

a -°22 
-"22 

&■ 

^66 _ ^12 >    ^44 _ ^23,    ^55 _ ^13 

39 



List of all participating scientific personnel 

1. WieslawM. Ostachowicz; Ph.D., Dr.Sc, Full Professor 

2. Marek Krawczuk; Ph.D. 

3. Arkadiusz Zak; M.Sc. 

M. Krawczuk expects to receive his Dr.Sc. this autumn based, in part, upon work done 

in this project. 

A. Zak expects to receive his Ph.D. next autumn based, in part, upon work done in this 

project. A copy of this thesis will be submitted when it becomes available. 

List of all publications and technical reports published 

1) Ostachowicz W., Krawczuk M.: Dynamic analysis of delaminated composite 

beam. Machine Vibration (Springer-Verlag), No.3, pp. 107-116, 1994. 

2) Krawczuk M., Ostachowicz W., Zak A.: Analysis of natural frequencies of 

delaminated composite beams based on finite element method. An International 

Journal Structural Engineering and Mechanics (paper accepted for publication - 16 

May 1995). 
3) Krawczuk M., Ostachowicz W., Zak A.: Modal analysis of cracked unidirectional 

composite beam. An International Journal Composites Engineering (paper 

submitted for publication - 3 March 1995) 

4) Ostachowicz W., Krawczuk M., Zak A.: The analysis of the influence of the 

fatigue crack on the changes of the natural frequencies for the unidirectional 

composite cantilever beam. [Proceedings] II International Conference on 

Composites Engineering, New Orleans, LA 20-24 August 1995. 

5) Krawczuk M., Ostachowicz W., Zak A: Natural frequencies of delaminated 

composite beam. Proceedings: XII Polish Conference on Computer Methods in 

Mechanics, Warsaw-Zegrze, Poland, 9-13 May 1995, pp. 171-172. 

6) Zak A., Krawczuk M., Ostachowicz W.: Analiza wptywu pekniecia zmqczeniowego 

na zmiany czqstosci drgan wlasnych belki wspornikowej wykonanej z 

jednokierunkowego materialu kompozytowego (The analysis of the influence of the 

fatigue crack on the changes of the natural frequencies for unidirectional 

composite cantilever beam). Reports of The Institute of Fluid Flow Machinery, 

No.3 66/94. 

7) Krawczuk M., Zak A., Ostachowicz W.: Kompozytowy ptytowy element skonczony 

z delaminacjq, Koncepcja ogölna oraz podstawowe zwiqzki. (The plate finite 

element with de lamination). Reports of The Institute of Fluid Flow Machinery, 

No.96/95. 

40 



8) Zak A., Krawczuk M., Ostachowicz W.,: Analiza numeryczna belek i pfyt 

kompozytowych z delaminacjq (Numerical analysis of delaminated composite 

beams and plates). Reports of The Institute of Fluid Flow Machinery, No. 171/95. 

41 


